starstarstarstarstar_half
La electrónica ha respaldado el desarrollo científico y tecnológico de la humanidad, ostentando un rol clave en los últimos 50 años. Nos admiramos de la capacidad del ser humano de diseñar circuitos integrados que contienen millones de transistores y que nos permiten procesar con gran precisión las señales más débiles provenientes de las antenas de telefonía celular, de las neuronas del cerebro, de una cámara digital, o de la carga depositada por partículas subatómicas que colisionan en el Gran Colisionador de Hadrones en Suiza. Es difícil entender un circuito electrónico, y aún más difícil diseñarlo. Pero no es imposible. Los electrones pueden ser muy dóciles si sabemos dominarlos. "Cómo entrenar a tus electrones 1: Fundamentos de la electrónica analógica", el primero de una serie de tres MOOCs, te permitirá aprender lo más básico de la electrónica a nivel de diagramas de bloques y amplificadores operacionales.
    starstarstarstarstar_half
    La electrónica ha respaldado el desarrollo científico y tecnológico de la humanidad, ostentando un rol clave en los últimos 50 años. Nos admiramos de la capacidad del ser humano de diseñar circuitos integrados que contienen millones de transistores y que nos permiten procesar con gran precisión las señales más débiles provenientes de las antenas de telefonía celular, de las neuronas del cerebro, de una cámara digital, o de la carga depositada por partículas subatómicas que colisionan en el Gran Colisionador de Hadrones en Suiza. Es difícil entender un circuito electrónico, y aún más difícil diseñarlo. Pero no es imposible. Los electrones pueden ser muy dóciles si sabemos dominarlos. "Cómo entrenar a tus electrones 2: Diodos y Transistores", el segundo de una serie de tres MOOCs, te permitirá dar los primeros pasos para comprender los dispositivos semiconductores más importantes: diodos y transistores de efecto de campo. Las videolecciones acompañadas de pequeños cuestionarios te ayudarán a reforzar tu aprendizaje en cuanto a la comprensión del funcionamiento de los semiconductores, los circuitos principales para rectificar y amplificar voltajes, y las técnicas de análisis más utilizadas.
      starstarstarstarstar_half
      Курс разработан Санкт-Петербургским государственным электротехническим университетом «ЛЭТИ» им. В.И. Ульянова при поддержке Санкт-Петербургского политехнического университета Петра Великого. «Сигналы и системы дискретного времени» — первый из нескольких курсов специализации, посвященной цифровой обработке сигналов. Современная цифровая обработка сигналов — сложная и многогранная область техники. Чтобы разобраться в ней, нужно прежде всего понять базовые принципы, о которых и пойдет речь в этом курсе. В нем всего две темы. Первая из них посвящена дискретным сигналам, в ней мы поговорим о том, что такое дискретное время, откуда берутся дискретные сигналы, как они анализируются, из каких элементарных кирпичиков складываются и каким образом попадают обратно в окружающий нас физический мир. Во второй теме мы перейдем от сигналов к системам, предназначенным для их обработки, и посмотрим, как эти системы классифицируются, какими характеристиками обладают и как именно изменяют проходящие через них сигналы. Это те основы, глубокое понимание которых необходимо для освоения и грамотного использования более сложных методов обработки сигналов, речь о которых пойдет в следующих курсах специализации. Цель курса : сформировать у слушателей представление о базовых принципах обработки сигналов в дискретном времени. В результате обучения слушатели будут: * Знать основы теории дискретных сигналов и систем. * Понимать законы преобразования сигналов в дискретных системах. * Уметь выполнять расчеты, связанные с анализом дискретных сигналов и систем, а также с прохождением сигналов через такие системы.
        starstarstarstarstar_half
        Este curso lhe dará a base necessária para entender técnicas mais avançadas de controle moderno. Você aprenderá como representar a dinâmica de um sistema no espaço de estados, como analisar um sistema no espaço de estados, como projetar uma realimentação de estado e como projetar um observador de estado. A partir desde conhecimento básico você já será capaz de realizar a análise e o projeto no espaço de estados e poderá avançar em seus estudos no controle moderno.
          starstarstarstarstar_half
          Após esse curso você será capaz de esboçar o Lugar Geométrico das Raízes (LGR - Root Locus) do denominador da Função de Transferência em Malha Fechada a partir dos polos e zeros da Função de Transferência em Malha aberta. Você também será capaz de projetar controladores de avanço de fase para atender simultaneamente requisitos de desempenho de amortecimento e de velocidade da resposta. Você também será capaz de projetar controladores de atraso de fase para atender requisitos de erro em regime permanente sem alterar as características de estabilidade e da resposta transitória do sistema. Você verá que os controladores PD e PI podem ser considerados como casos especiais dos controladores de avanço e de atraso de fase e verá também que você pode combinar os dois tipos de controladores em controladores de avanço e atraso de fase ou em controladores PID. Por fim você será capaz de modelar o efeito do atraso de transporte em um sistema com realimentação e de contrapor esse efeito projetando um controlador ou fazendo ajustes em um controlador já projetado. Desso modo dado um sistema linear e invariante no tempo e requisitos de amortecimento, velocidade e erro em regime permanente você será capaz de projetar um controlador que fará com que o sistema em malha fechada atenda simultaneamente a esses três tipos de requisitos. E você aprenderá tudo isso usando o MATLAB, uma ferramenta computacional extremamente útil para a análise, projeto e simulação de sistemas.
            starstarstarstarstar_border
            Neste curso você aprenderá a obter a resposta em frequência de um sistema Linear e Invariante no Tempo (LIT) e a usá-la para projetar controladores que atinjam requisitos de reposta transitória e em regime estacionário. Você aprenderá a obter o diagrama de Bode a partir de dados de amplitude e fase de entradas e saídas senoidais. Também será capaz de esboçar o diagrama de Bode de um sistema dada a sua função de transferência. Outrossim, será capaz de representar a resposta em frequência na carta de Nichols-Black. A fim de se determinar a estabilidade do sistema, você aprenderá a aplicar o critério de Nyquist, que faz uso da resposta em frequência em malha aberta e permite determinar se um sistema será estável em malha fechada. Ao fim do curso, você será capaz de projetar controladores com dinâmica, isto é, com polos e zeros, portanto mais complexos do que um simples ganho de realimentação. Essa flexibilidade permitirá que você projete controladores para satisfazer simultaneamente requisitos de sobressinal e tempo de resposta que seriam impossíveis de atender com um simples ganho. Também poderá com isso alterar as características da resposta em regime estacionário, aumentando as constantes de erro sem alterar (muito) a resposta transitória. Por fim, você aprenderá a projetar controladores do tipo PD, PI e PID, que estão entre os mais disseminados em aplicações de engenharia de controle.
              star_border star_border star_border star_border star_border
              O objetivo deste curso é apresentar o assunto de Controle a Tempo Discreto para sistemas lineares e invariantes no tempo. São apresentadas técnicas para lidar com implementação de controladores por computador, requerendo a consideração da discretização do tempo inerente aos seu uso. A importância dos conhecimentos apresentados nesse curso se justifica pela onipresença de controladores digitais em aplicações atualmente. O curso é dividido em 4 módulos, resumidamente: 1) Apresentação de modelos para sistemas operando a tempo discreto e critérios para avaliar sua estabilidade. 2) Formas de discretizar aproximadamente uma função de transferência a tempo contínuo e estimação do efeito da discretização na resposta do sistema. 3) Projeto do controlador diretamente em tempo discreto, usando duas abordagens: resposta em frequência e Lugar Geométrico das Raízes (LGR). 4) Projeto do controlador diretamente em tempo discreto, usando o espaço de estados. Ao longo do curso, ferramentas computacionais de projeto de controladores auxiliado por computador são usadas para ilustrar a aplicação das técnicas através de exemplos. Apesar de ser possível concluir o curso prescindindo dessas ferramentas, seu uso é recomendado por dois motivos: facilidade de realizar as operações mais tediosas, liberando mais tempo para focar no conteúdo, e aproximação com o que é feito na prática de projetos no âmbito de atuação do(a) profissional. Ao final desse curso, o(a) aluno(a) deve ser capaz de adaptar criteriosamente um projeto de controlador feito a tempo contínuo para aplicação em sistemas controlador por computador digital e projetar diretamente um controlador a tempo discreto para o mesmo uso.